
OBJECT ORIENTED PROGRAMMING

● Object-Oriented Programming is a methodology or paradigm to design a
program using classes and objects. It simplifies the software development
and maintenance by providing some concepts defined below :

● Class is a user-defined data type which defines its properties and its
functions. Class is the only logical representation of the data. For
example, Human being is a class. The body parts of a human being are its
properties, and the actions performed by the body parts are known as
functions. The class does not occupy any memory space till the time an
object is instantiated.

C++ Syntax (for class) :
class student{

public:
int id; // data member
int mobile;
string name;

int add(int x, int y){ // member functions
return x + y;

}
};

● Object is a run-time entity. It is an instance of the class. An object can
represent a person, place or any other item. An object can operate on
both data members and member functions.

C++ Syntax (for object):
student s = new student();

Note : When an object is created using a new keyword, then space is
allocated for the variable in a heap, and the starting address is stored in
the stack memory. When an object is created without a new keyword,
then space is not allocated in the heap memory, and the object contains
the null value in the stack.

APNI KAKSHA

● Inheritance

Inheritance is a process in which one object acquires all the properties and
behaviors of its parent object automatically. In such a way, you can reuse,
extend or modify the attributes and behaviors which are defined in other
classes.
In C++, the class which inherits the members of another class is called
derived class and the class whose members are inherited is called base class.
The derived class is the specialized class for the base class.

C++ Syntax :

class derived_class :: visibility-mode base_class;
visibility-modes = {private, protected, public}

Types of Inheritance :
1. Single inheritance : When one class inherits another class, it is known

as single level inheritance
2. Multiple inheritance : Multiple inheritance is the process of deriving

a new class that inherits the attributes from two or more classes.
3. Hierarchical inheritance : Hierarchical inheritance is defined as the

process of deriving more than one class from a base class.
4. Multilevel inheritance : Multilevel inheritance is a process of deriving a

class from another derived class.
5. Hybrid inheritance : Hybrid inheritance is a combination of

simple, multiple inheritance and hierarchical inheritance.

● Encapsulation

Encapsulation is the process of combining data and functions into a single
unit called class. In Encapsulation, the data is not accessed directly; it is
accessed through the functions present inside the class. In simpler words,
attributes of the class are kept private and public getter and setter methods
are provided to manipulate these attributes. Thus, encapsulation makes the
concept of data hiding possible. (Data hiding: a language feature to restrict
access to members of an object, reducing the negative e�ect due to
dependencies. e.g. "protected", "private" feature in C++).

APNI KAKSHA

●Abstraction

We try to obtain an abstract view, model or structure of a real life problem,
and reduce its unnecessary details. With definition of properties of
problems, including the data which are a�ected and the operations which
are identified, the model abstracted from problems can be a standard
solution to this type of problems. It is an e�cient way since there are
nebulous real-life problems that have similar properties.

Data binding : Data binding is a process of binding the application UI and
business logic. Any change made in the business logic will reflect directly to the

application UI.

●Polymorphism

Polymorphism is the ability to present the same interface for di�ering
underlying forms (data types). With polymorphism, each of these classes
will have di�erent underlying data. A point shape needs only two
coordinates (assuming it's in a two-dimensional space of course). A circle
needs a center and radius. A square or rectangle needs two coordinates for
the top left and bottom right corners and (possibly) a rotation. An irregular
polygon needs a series of lines. Precisely, Poly means ‘many’ and morphism
means ‘forms’.

Types of Polymorphism IMP

1. Compile Time Polymorphism (Static)
2. Runtime Polymorphism (Dynamic)

Let’s understand them one by one :

●Compile Time Polymorphism : The polymorphism which is implemented at
the compile time is known as compile-time polymorphism. Example -
Method Overloading

APNI KAKSHA

Method Overloading : Method overloading is a technique which allows you
to have more than one function with the same function name but with
di�erent functionality. Method overloading can be possible on the
following basis:

1. The return type of the overloaded function.

2. The type of the parameters passed to the function.

3. The number of parameters passed to the function.

Example :

#include<bits/stdc++.h>
using namespace std;

class Add {
public:

int add(int a,int b){
return (a + b);

}
int add(int a,int b,int c){

return (a + b + c);
}

};
int main(){

Add obj;
int res1,res2;
res1 = obj.add(2,3);
res2 = obj.add(2,3,4);
cout << res1 << " " << res2 << endl;
return 0;

}

/*
Output : 5 9
add() is an overloaded function with a di�erent number of parameters. */

APNI KAKSHA

●Runtime Polymorphism : Runtime polymorphism is also known as dynamic
polymorphism. Function overriding is an example of runtime
polymorphism. Function overriding means when the child class contains
the method which is already present in the parent class. Hence, the child
class overrides the method of the parent class. In case of function
overriding, parent and child classes both contain the same function with a
di�erent definition. The call to the function is determined at runtime is
known as runtime polymorphism.

C++ Sample Code :

#include <bits/stdc++.h>
using namespace std;

class Base_class{
public:

virtual void show(){
cout << "Apni Kaksha base" << endl;

}
};

class Derived_class : public Base_class{
public:

void show(){
cout << "Apni Kaksha derived" << endl;

}
};

int main(){
Base_class* b;
Derived_class d;
b = &d;
b->show(); // prints the content of show() declared in derived
class return 0;

APNI KAKSHA

}

// Output : Apni Kaksha derived

●Constructor : Constructor is a special method which is invoked automatically
at the time of object creation. It is used to initialize the data members of
new objects generally. The constructor in C++ has the same name as class or
structure.

There can be two types of constructors in C++.

1. Default constructor : A constructor which has no argument is known
as default constructor. It is invoked at the time of creating an
object.

2. Parameterized constructor : Constructor which has parameters is
called a parameterized constructor. It is used to provide

di�erent values to distinct objects.

3. Copy Constructor : A Copy constructor is an overloaded
constructor used to declare and initialize an object from another
object. It is of two types - default copy constructor and user
defined copy constructor.

C++ Sample Code :

#include <bits/stdc++.h>
using namespace std;

class go {
public:

int x;
go(int a){ // parameterized constructor.

APNI KAKSHA

x=a;
}
go(go &i){ // copy constructor

x = i.x;
}

};
int main(){

go a1(20); // Calling the parameterized constructor.
go a2(a1); // Calling the copy constructor.
cout << a2.x << endl;
return 0;

}

// Output : 20

●Destructor : A destructor works opposite to constructor; it destructs the
objects of classes. It can be defined only once in a class. Like constructors, it
is invoked automatically. A destructor is defined like a constructor. It must
have the same name as class, prefixed with a tilde sign (~).

Example :
#include<bits/stdc++.h>
using namespace std;

class A{
public:

// constructor and destructor are called automatically,
once the object is instantiated

A(){
cout << "Constructor in use" << endl;

}
~A(){

cout << "Destructor in use" << endl;
}

};
int main(){

APNI KAKSHA

A a;
A b;
return 0;

}
/*
Output: Constructor in use

Constructor in use
Destructor in use
Destructor in use

*/

● ‘this’ Pointer : this is a keyword that refers to the current instance of the
class. There can be 3 main uses of ‘this’ keyword:

1. It can be used to pass the current object as a parameter to

another method

2. It can be used to refer to the current class instance variable.

3. It can be used to declare indexers.

C++ Syntax :

struct node{
int data;
node *next;

node(int x){
this->data = x;
this->next = NULL;

}
}

● Friend Function : Friend function acts as a friend of the class. It can access
the private and protected members of the class. The friend function is not

APNI KAKSHA

a member of the class, but it must be listed in the class definition. The
non-member function cannot access the private data of the class.
Sometimes, it is necessary for the non-member function to access the data.
The friend function is a non-member function and has the ability to
access the private data of the class.

Note :
1. A friend function cannot access the private members directly, it has

to use an object name and dot operator with each member name.
2. Friend function uses objects as arguments.

Example IMP :

#include <bits/stdc++.h>
using namespace std;

class A{
int a = 2;
int b = 4;
public:

// friend function
friend int mul(A k){
return (k.a * k.b);
}

};

int main(){
A obj;
int res = mul(obj);
cout << res << endl;
return 0;

}

// Output : 8

●Aggregation : It is a process in which one class defines another class as

APNI KAKSHA

any entity reference. It is another way to reuse the class. It is a form of
association that represents the HAS-A relationship.

●Virtual Function IMP: A virtual function is used to replace the
implementation provided by the base class. The replacement is always
called whenever the object in question is actually of the derived class, even
if the object is accessed by a base pointer rather than a derived pointer.

1. A virtual function is a member function which is present in the
base class and redefined by the derived class.

2. When we use the same function name in both base and derived
class, the function in base class is declared with a keyword
virtual.

3. When the function is made virtual, then C++ determines at run-time
which function is to be called based on the type of the object pointed
by the base class
pointer. Thus, by making the base class pointer to point to
di�erent objects, we can execute di�erent versions of the virtual
functions.

Key Points :
1. Virtual functions cannot be static.
2. A class may have a virtual destructor but it cannot have a virtual

constructor.

C++ Example :

#include <bits/stdc++.h>

APNI KAKSHA

using namespace std;

class base {
public:

// virtual function (re-defined in the derived class)
virtual void print(){

cout << "print base class" << endl;
}

void show(){
cout << "show base class" << endl;

}
};

class derived : public base {
public:

void print(){
cout << "print derived class" << endl;

}

void show(){
cout << "show derived class" << endl;

}
};

int main(){
base* bptr;
derived d;
bptr = &d;

// virtual function, binded at runtime
bptr->print();

// Non-virtual function, binded at compile time
bptr->show();

}

/*
output :

APNI KAKSHA

print derived class // (impact of virtual function)
show base class
*/

●Pure Virtual Function :
1. A pure virtual function is not used for performing any task. It only

serves as a placeholder.
2. A pure virtual function is a function declared in the base class

that has no definition relative to the base class.
3. A class containing the pure virtual function cannot be used to declare

the objects of its own, such classes are known as abstract base
classes.

4. The main objective of the base class is to provide the traits to the
derived classes and to create the base pointer used for achieving the
runtime polymorphism.

C++ Syntax :

virtual void display() = 0;

C++ Example :
#include<bits/stdc++.h>
using namespace std;

class Base{
public:

virtual void show() = 0;
};
class Derived : public Base {

public:
void show() {

cout << "You can see me !" << endl;
}

};
int main(){

Base *bptr;

APNI KAKSHA

Derived d;
bptr = &d;
bptr->show();
return 0;

}

// output : You can see me !

●Abstract Classes : In C++ class is made abstract by declaring at least one of
its functions as a pure virtual function. A pure virtual function is specified
by placing "= 0" in its declaration. Its implementation must be provided
by derived classes.

Example :
#include<bits/stdc++.h>
using namespace std;

// abstract class
class Shape{

public:
virtual void draw()=0;

};
class Rectangle : Shape{

public:
void draw(){

cout << "Rectangle" << endl;
}

};
class Square : Shape{

public:
void draw(){

cout << "Square" << endl;
}

};

int main(){
Rectangle rec;
Square sq;

APNI KAKSHA

rec.draw();
sq.draw();
return 0;

}

/*
Output :
Rectangle
Square
*/

●Namespaces in C++ :
1. The namespace is a logical division of the code which is designed to

stop the naming conflict.
2. The namespace defines the scope where the identifiers such as

variables, class, functions are declared.
3. The main purpose of using namespace in C++ is to remove the

ambiguity. Ambiguity occurs when a di�erent task occurs with the
same name.

4. For example: if there are two functions with the same name such as
add(). In order to prevent this ambiguity, the namespace is used.
Functions are declared in di�erent namespaces.

5. C++ consists of a standard namespace, i.e., std which contains
inbuilt classes and functions. So, by using the statement "using
namespace std;" includes the namespace "std" in our program.

C++ Example :
#include <bits/stdc++.h>
using namespace std;

// user-defined namespace
namespace Add {

int a = 5, b = 5;
int add() {

return (a + b);
}

}

APNI KAKSHA

int main() {
int res = Add :: add(); // accessing the function inside namespace
cout << res;

}

// output : 10

●Access Specifiers IMP : The access specifiers are used to define how functions
and variables can be accessed outside the class. There are three types of
access specifiers:

1. Private: Functions and variables declared as private can be accessed only
within the same class, and they cannot be accessed outside the class they
are declared.

2. Public: Functions and variables declared under public can be accessed from
anywhere.

3. Protected: Functions and variables declared as protected cannot be
accessed outside the class except a child class. This specifier is generally
used in inheritance.

Key Notes

●Delete is used to release a unit of memory, delete[] is used to release an array.

●Virtual inheritance facilitates you to create only one copy of each object
even if the object appears more than one in the hierarchy.

● Function overloading: Function overloading is defined as we can have more
than one version of the same function. The versions of a function will have
di�erent signatures meaning that they have a di�erent set of parameters.

APNI KAKSHA

Operator overloading: Operator overloading is defined as the standard
operator can be redefined so that it has a di�erent meaning when applied to
the instances of a class.

●Overloading is static Binding, whereas Overriding is dynamic Binding.
Overloading is nothing but the same method with di�erent arguments,
and it may or may not return the same value in the same class itself.
Overriding is the same method name with the same arguments and
return types associated with the class and its child class.

APNI KAKSHA

